
Monitoring the Performance of a neuro-adaptive
Controller

Johann Schumann∗ and Pramod Gupta†

∗RIACS / NASA Ames Research Center
†QSS / NASA Ames Research Center

Abstract. We present a tool to estimate the performance of the neural network in a neural network
based adaptive controller. Using a Bayesian approach, this tool supports verification and validation
of the adaptive controller as well as on-line monitoring. In this paper, we discuss our approach
and present simulation results using the adaptive controller developed for NASA’s IFCS (Intelligent
Flight Control System) project.

INTRODUCTION

Traditional control has proven to be ineffective to deal with catastrophic changes or
slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, and
in areas such as robotics or flexible manufacturing systems. Adaptive control systems,
which can adapt toward changes in the plant have been proposed as they offer many
advantages (e.g., better performance, controllability of aircraft despite of a damaged
wing). In the last few years, use of neural networks in adaptive controllers (neuro-
adaptive control) has been studied actively [1, 2, 3, 4]. Neural networks of various
architectures have been used successfully for on-line learning adaptive controllers. In
one of the control architecture, the neural network receives as an input the current
deviation between desired and actual plant behavior and, by on-line training, tries to
minimize this discrepancy (e.g., by producing a control augmentation signal) [3].

Even though neuro-adaptive controllers offer many advantages, they have not been
used in mission- or safety-critical applications, because performance and safety guar-
antees cannot be provided at development time—a major prerequisite for certification
(e.g., by the FAA or NASA). Because of the requirement to adapt toward unforeseen
changes during operation, design-time verification & validation (V&V) is not sufficient.
Moreover, there are no established ways to verify and validate adaptive control systems
due to (1) non-deterministic nature of controllers and (2) lack of established methods to
determine basic adaptive control systems stability and performance. V&V of an adaptive
controller requires the development of new analysis techniques which can demonstrate
that the control system behaves safely under all operating conditions.

One important aspect of V&V is to analyze theperformanceof the system during
design time and testing, and to monitor it after deployment. Since the neural network
comprises the core adaptive element in a neuro-adaptive controller, it is important to
obtain information about the learning and convergence behavior of the network. For ex-
ample, in situations where the network is subjected to novel data, or the network has

been over trained, the output of the neural network can be far from the desired value,
possibly leading to uncontrollability of the system. Thus, a performance metric on the
network training and generalization behavior is highly valuable. We have developed a
tool (“Confidence Tool”) which dynamically estimates the network performance (con-
fidence intervals), based upon the current inputsx and the training historyD. The con-
fidence measure is the variance of the neural network outputo, which is obtained by
calculating the probability densityp(o|x,D) using a Bayesian approach [5]. We have
extended this approach to handle specific neural network architectures (e.g., single hid-
den layer, or Sigma-Pi networks [6]) and to accommodate the dynamic weight update.
This tool allows real-time assessment of controller performance together with handling
qualities of the aircraft’s performance.

In this paper, we discuss this approach and present the tool, which is used in a
simulation environment for controller design, tuning, and V&V, and is currently being
implemented as a monitoring tool on the flight computer of a manned F-15 aircraft
within NASA’s IFCS project.

In the rest of this paper, we give a short background on the IFCS adaptive controller
and our approach to verification and validation (V&V) of neural networks. Then we
briefly explain the mathematical derivation for our confidence tool and discuss some
experimental/simulation results.

BACKGROUND: THE IFCS ADAPTIVE CONTROLLER

We will illustrate our approach with an adaptive flight control system (FCS) which has
been developed within the IFCS project at NASA. The target aircraft for this controller
is a specifically configured F15 jet aircraft. It has additional actuator surfaces, so-called
canards, that are located in front of the wings. By moving them, the airflow over the
wing can be modified in a wide range. Thus, this aircraft can be used to simulate failures
like wing-damage during test flights. The FCS (Fig. 1) is a straight-forward dynamic
inverse controller: the pilot stick and pedal commands are mixed with the current sensor
readings (airspeed, angle of attack, and altitude) to form the desired behavior of the
aircraft (measured as roll-rate, pitch-rate, and yaw-rate). The dynamic inverse model
then calculates the required actuator movements (e.g., of aileron or rudder) to bring the
aircraft into the desired state.

If the aerodynamics of the aircraft changes (e.g., due to a broken surface), there
is a deviation between desired and actual state. The neural network is trained during
operation to produce a correction signalUAD to minimize this deviation. The inputs of
the neural network are typically the current state of the aircraft (i.e., the sensor signals),
the commanded input, and the correction signal of the previous time frame.

The controller (IFCS Gen-II, [3]) uses a Sigma-Pi neural network [6]. In this network
(Figure 2), the inputs are subjected to basis functions (e.g., square, tanh, scaling). Then
products (Π) of these function values are calculated. The final output of the network is
a weighted sum (Σ) of these products—hence the name of this architecture.

The network is trained according to a given update rule [3]. The weight update rule
is derived from a Lyapunov stability analysis of the entire controller. In this paper, we

FIGURE 1. IFCS Adaptive Control Architecture

will not discuss this weight update rule (see [3] for details), because our approach is
independent of the learning rule. In fact, our algorithm can easily be adapted for other
network types.

FIGURE 2. Architecture ofΣΠ network

APPROACHES TO NN VERIFICATION AND VALIDATION

Ensuring that a system meets its specifications, is a central goal of verification, valida-
tion, and certification procedures. For a system to be verified and certified, a unique set of
specifications is required, describing the behavior of the system for every circumstance,
within which it has to operate. If this approach is to be preserved for NN certification,
the nature of the specification must be radically altered to accommodate changes of the
underlying system. Instead of the explicit specification of normal operational scenarios
and specific failure cases, possibly many (unforeseen) changes in the plant or in the en-
vironment must be addressed. Due to the special nature of the adaptive controller (and
the involved numerical optimization routines), thesoftware process, which covers all
stages from initial requirements to deployment must be specifically tailored.

Based on the properties of the development process for NNs, we can specify require-
ments for a certification standard: 1) how are the goals or requirements for the NN to be
obtained, 2) what should be done to ensure that the training data adequately represent the
system, 3) what type of networks can be used (i.e., number of nodes, number of layers,
connectivity etc.), 4) what details the NN developer must provide regarding the way in
which the NN module interfaces with the rest of the system, 5) what methods are to be

used for quality assurance in the trained network, and 6) how does the on-line training
behave during operation?

FIGURE 3. Layers of NN V&V methods

To address the problems discussed above, we use a multi-layered approach [7, 8]
to V&V techniques and methods for NN based systems (Figure 3). The core-layer
contains rigorous, mathematically sound results concerning robustness, stability, and
convergence. Current state-of-the-art, however, only can provide relatively weak results,
often in form of asymptotic guarantees. Typical examples here include Lyapunov proofs
of (asymptotic) stability or Vapnik-Chervonenkis-dimension arguments to reason about
the NN’s generalization abilities [9].

However, for safety-critical applications, much stronger guarantees are required, as,
for example, about convergence within a required short period of time (usually on the
order of a few seconds). Thus, methods on the second layer need to address these issues
by intelligent testing. Here, techniques can be applied to reduce the number of required
test cases in the nominal mode and pre-analyzed failure cases. This optimization can
substantially reduce overall development costs, since the execution of test cases (in high-
fidelity simulators or in test-flights) are a major cost driver.

For truly adaptive systems, however, we still don’t have an a-priori guarantee for per-
formance. Here, the third layer comes into play: methods in this layer willdynamically
monitor the NN and its behavior. Although it ultimately cannot provide the guarantee, it
at least can return dynamic information on how the NN currently behaves and if the cur-
rent state of the system is recoverable at all. This information then can be used by other
systems, like intelligent vehicle health monitoring or recovery systems, to accordingly
react in cases where the network’s output does not have an acceptable quality.

All approaches and techniques on the different layers must be applied in a coordinated
manner. To this end, we have developed a software verification and validation process
guide [10] which extends standardized software processes toward specific requirements
for neural-networks based controllers.

THE CONFIDENCE TOOL

Because of the adaptive nature of a neuro-adaptive controller, a dynamic monitoring of
the performance of the neural network is important, to be able to detect critical situations.

Any feed-back controller can always handle small deviations between the model and
the actual plant dynamics. However, this robustness is strictly limited by the design
of the controller. In cases of (larger) deviations it is therefore necessary to know the
current quality of the system’s model in order to obtain a probability under which the
controller exceeds it robustness limits. As mentioned before, this dynamic measure1 does
not prevent an uncontrollable situation, but it can provide information about the current
safety margins. Therefore, our Confidence Tool calculates a measure for the network
performance at each point in time. As discussed above, the varianceσ2 of the network
output is used, assuming a Gaussian distribution. Thus, we do not consider the neural
network as a function approximator which returns a number, but consider the probability
distributionp(o|x,D) when the network is getting a (noisy) inputx and has been trained
using training dataD. o is the network output. Marginalizing over all possible weights
w of the network, this probability can be calculated as:

p(o|x,D) =
∫

p(o|x,w)p(w|D)dw (1)

We calculate the varianceσ2 of o following the derivation in [5]. The first term in the
integral concerns the “query” phase of the trained network, when it is subjected to input
x. The second termp(w|D) describes, how the weightsw of the network are influenced
by training it using training dataD. It can be calculated as a posterior using Bayes’ rule,
considering the distribution of the weights before and after the training dataD has been
seen by the network.

p(w|D) =
p(D|w)p(w)

p(D)

We use a simple Gaussian prior forp(w), since we assume that the weights before
training are Gaussian distributed. The probability of the datap(D) =

∫
p(D|w)p(w)dw

is a normalization factor. For the further derivation (see [5] for details) two hyper-
parametersα andβ are introduced to obtain

p(w|D) ∝ exp{−(βED +αEW)}

whereED is the (quadratic) training error andEW the sum of the squares of the weights.
A quadratic approximation of the exponent around the most probable weights and
substitution into (1) finally yields (for details see [5])

σt
2 =

1
β

+∇T
wA−1∇w (2)

where∇w is the gradient of the network output with respect to the weights at the current
input x, and A = βHD + αI . HD is the Hessian of the network with respect to its
weightsw. This closed-form solution now enables the efficient calculation of our desired
performance measure.

1 In the architecture of Fig. 1, the NN does not represent the plant model. Since, however, the network
produces the augmented control signal, the quality of the output directly influence the quality of the model.

There are various ways to estimate the parametersα and β (see [5]). Since our
aim is not to obtain an optimal model (i.e., network architecture), we chose a coarse
approximation for the hyper parameters, namelyα = W/2EW and β = N/2ED for
N >> W, whereW is the number of weights, andN the number of training data in
D. Experiments with more elaborate mechanisms (see [5]) yielded similar results for
our application area.

Eq. (2) provides a natural basis for the system architecture of the confidence tool.
In a preprocessingstep, we calculate the matrixA and the hyper-parametersα andβ .
This calculation requires training dataD and the network weightsw. The monitoring
component calculates the confidence measureσ2 based upon the current inputx and the
values calculated by the preprocessing component. Figure 4 shows a simplified version
of this architecture.

This architecture of the confidence tool can be applied to a pre-trained neural network,
where all the training is performed before deployment. A truly adaptive controller,
however, requires that the network training is also performed during system operation.
In this case, the network weights are updated after each system cycle. For such networks,
our algorithm interleaves the preprocessing and the monitoring components of the tool.
For further reduction of the computational needs (i.e., essentially, how often the matrix
inverse is calculated), we use a simple sliding window technique which requires the
matrix inverse to be calculated only everyp steps. In our application, where the main
update cycle is 12.5ms (80Hz), we are usingp = 40 in order catch the important
dynamics but not to overburden the CPU.

FIGURE 4. Simplified Architecture of Confidence Tool

EXPERIMENTAL RESULTS

The confidence tool has been implemented in C and Matlab for two system architectures.
Architecture I uses a pre-trained network (single-hidden layer neural network), whereas
architecture II uses a Sigma-Pi network which is trained on-line. Figure 5(left) shows
the results of the confidence tool on data of an actual test-flight using a pre-trained
neural network. The figure showsσ2 over the entire duration of the flight (approx. 20
minutes). Before takeoff and after landing the aircraft is taxiing on the ground. It is
observed that during the entire flight, the confidence of the network output is high (σ2

is low). This is an indication that the network has been trained well for all operational

conditions of this flight. Short spikes resulted from isolated bad data points. However,
the network performance is substantially worse at the beginning and the end of the test
flight. The reason for this is that the dynamic behavior of the aircraft on the ground is
quite different from that in the air, and that the network has not been trained for these
operating conditions.

Figure 5(right) shows the results of a simulation experiment carried out with the on-
line adaptive controller of Figure 1. Here again,σ2 is shown over time (small portion of
a simulated test flight). At timeT = 1.0s, the pilot issues a specific command, a so-called
doublet (fast stick movement from neutral into positive, then negative and back to neutral
position; Fig. 5(lower right)). Shortly afterwards (T = 1.5s), one control surface of the
aircraft (stabilizer) gets stuck (“failure”). Because the system dynamics and the model
behavior do not match any more, the neural network produces an additional control
signal to compensate for this deviation. The network weights are updated according to
the given weight update rule. Initially, the network confidence is very high, but as soon as
the damage occurs, the network has to adapt. Here,σ2 of the network outputs increases
substantially, indicating a large uncertainty in the network output. Due to the dynamic
training of the network, this uncertainty decreases very quickly.

A second and third pilot command which is identical to the first one is executed
at T = 11s, andT = 17s, respectively. During that time, the network’s confidence is
still reduced, but much less than before. This is a clear indication that the network has
successfully adapted to handle this failure situation.

FIGURE 5. (left) Output of the confidence tool (architecture I) for a pre-trained neural network on test-
flight data. Takeoff is atT = 70s, landing atT = 1800s. (right) Confidence valueσ2 over time(top) and
pilot commands for roll axis (bottom). A failure has occurred atT = 1.5s.

CONCLUSIONS

In this paper, we have presented a tool to dynamically calculate the performance of the
output of a neural network. The performance measure is the varianceσ2 of the network
output. The tool has been developed for single hidden layer and Sigma-Pi networks
which are pre-trained or trained during operation. In this paper, we have shown results of
experiments for both architectures. The confidence tool for the on-line adaptive network

is currently being implemented on the flight control computer of a NASA F-15 aircraft
and will be test-flown later this year.

The confidence tool provides a statistical performance measure of the neural network.
However, this measure cannot provide full information about the following questions:
How fast will the network converge to a final solution? and How does the network per-
formance relate to the overall performance of the controller? We are currently investi-
gating the relationship of our performance measure to the overall handling quality of the
aircraft. This relationship will finally enable the Confidence Tool to provide a reliable
monitor for on-line adaptive neural network based controllers.
Acknowledgments This work is in part sponsored by the NASA IFCS project and
the NASA Office of Safety and Mission Assurance (OSMA). We are thankful for the
comments and suggestions provided by the anonymous reviewer.

REFERENCES

1. Norgaard, M., Ravn, O., Poulsen, N., and Hansen, L. K.,Neural Networks for Modeling and Control
of Dynamic Systems, Springer, 2002.

2. Ge, S. S., Lee, T., and Harris, C. J.,Adaptive Neural Network Control of Robotic Manipulators,
vol. 19 ofWorld Scientific Series in Robotics and Intelligent Systems, World Scientific, 1998.

3. Rysdyk, R., and Calise, A.,AIAA American Institute of Aeronautics and Astronautics, AIAA-98-
4483, 1722–1728 (1998).

4. Calise, A., and Rysdyk, R.,IEEE Control Systems Magazine, 21, 14–26 (1998).
5. Bishop, C. M.,Neural Networks for Pattern Recognition, Clarendon-Press, Oxford, 1995.
6. Rumelhart, McClelland, and the PDP Research Group,Parallel Distributed Processing, MIT Press,

1986.
7. Schumann, J., and Nelson, S., “Toward V&V of Neural Network Based Controllers,” inProceedings

WOSS (Workshop on Self-Healing Systems, 2002, ACM Press, 2002, pp. 67–72.
8. Gupta, P., and Schumann, J., “A Tool for Verification and Validation of Neural Network Based Adap-

tive Controllers for High Assurance Systems,” inProceedings High Assurance Software Engineering
(HASE), IEEE, 2004.

9. Reed, R., and Marks, R.,Neural Smithing, MIT Press, 1999.
10. Mackall, D., Nelson, S., and Schumann, J., Verification and validation of neural networks of

aerospace applications, Tech. Rep. CR-211409, NASA (2002).

